Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Chem Biol Interact ; 395: 111032, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705442

RESUMEN

Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 µM PAE before exposure to 200 µg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.

2.
Hortic Res ; 11(5): uhae060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716228

RESUMEN

High levels of free amino acids (AAs) in tea leaves are crucial for tea flavor and health function; however, the dynamic AA biosynthesis, transport, and turnover in tea plants remain elusive. Here we dissected whole tea plants for these dynamics by assessing AA profiles and transcriptomes of metabolic pathway genes in tea roots, stems, and leaves and revealing their distinctive features with regard to AA synthesis, transport, and degradation/recycling. Nitrogen assimilation dominated in the roots wherein glutamine (Gln), theanine, and arginine (Arg) were actively synthesized. Arg was transported into trunk roots and stems, together with Glu, Gln, and theanine as the major AAs in the xylem sap for long-distance root-to-leaf transport. Transcriptome analysis revealed that genes involved in Arg synthesis were highly expressed in roots, but those for Arg transport and degradation were highly expressed in stems and young leaves, respectively. CsGSIa transcripts were found in root meristem cells, root, stem and leaf vascular tissues, and leaf mesophyll where it appeared to participate in AA synthesis, transport, and recycling. Overexpression of CsGSIa in tea transgenic hairy roots and knockdown of CsGSIa in transgenic hairy roots and tea leaves produced higher and lower Gln and theanine than wild-type roots and leaves, respectively. This study provides comprehensive and new insights into AA metabolism and transport in the whole tea plant.

3.
Inflammation ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598115

RESUMEN

Particulate matter (PM) induces and enhances oxidative stress and inflammation, leading to a variety of respiratory diseases, including acute lung injury. Exploring new treatments for PM-induced lung injury has long been of interest to researchers. Palmatine (PAL) is a natural extract derived from plants that has been reported in many studies to alleviate inflammatory diseases. Our study was designed to explore whether PAL can alleviate acute lung injury caused by PM. The acute lung injury model was established by instilling PM (4 mg/kg) into the airway of mice, and PAL (50 mg/kg and 100 m/kg) was administrated orally as the treatment groups. The effect and mechanism of PAL treatment were examined by immunofluorescence, immunohistochemistry, Western Blotting, ELISA, and other experiments. The results showed that oral administration of PAL (50 mg/kg and 100 m/kg) could significantly alleviate lung inflammation and acute lung injury caused by PM. In terms of mechanism, we found that PAL (50 mg/kg) exerts anti-inflammatory and anti-damage effects mainly by enhancing the activation of the Nrf2-related antioxidant pathway and inhibiting the activation of the NLRP3-related pyroptosis pathway in mice. These mechanisms have also been verified in our cell experiments. Further cell experiments showed that PAL may reduce intracellular reactive oxygen species (ROS) by activating Nrf2-related pathways, thereby inhibiting the activation of NLRP3-related pyroptosis pathway induced by PM in Beas-2B cell. Our study suggests that PAL can be a new option for PM-induced acute lung injury.

4.
Nature ; 629(8011): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632411

RESUMEN

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Asunto(s)
Modelos Moleculares , Multimerización de Proteína , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/química , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Unión Proteica , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Calcio/metabolismo , Fosfolípidos/metabolismo , Fosfolípidos/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/química
5.
BMC Bioinformatics ; 25(1): 78, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378437

RESUMEN

BACKGROUND: In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations. RESULTS: In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs. CONCLUSIONS: Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git.


Asunto(s)
Antibacterianos , Bosques Aleatorios , Probabilidad , Programas Informáticos
6.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215751

RESUMEN

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Asunto(s)
Linfocitos T CD8-positivos , Serotonina , Linfocitos T CD8-positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal
7.
Respiration ; 103(2): 95-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38272003

RESUMEN

INTRODUCTION: Fibrosing mediastinitis is a benign but fatal disorder characterized by the proliferation of fibrous tissue in the mediastinum, causing encasement of mediastinal organs and extrinsic compression of adjacent bronchovascular structures. FM-associated pulmonary hypertension (FM-PH) is a serious complication of FM, resulting from the external compression of lung vessels. Pathologic assessment is important for etiologic diagnosis and effective treatment of this disease. CASE PRESENTATION: A 59-year-old male patient presented at our hospital and was diagnosed with FM-PH. He declined surgical biopsy that is the reference standard for pathologic assessment, in consideration of the potential risks. Therefore, an endobronchial ultrasound examination was performed, which identified the subcarinal lesion. Under ultrasound guidance, four needle aspirations were carried out, followed by one cryobiopsy. Histopathological examination of transbronchial needle aspiration specimens was inconclusive, while samples from cryobiopsy suggested a diagnosis of idiopathic FM. Further immunophenotyping demonstrated the infiltration of lymphocytes, macrophages, and FOXP3-positive cells in FM-PH. CONCLUSION: Mediastinal cryobiopsy might be a novel and safe option for FM-PH patients who are unwilling or unsuitable for surgical procedure.


Asunto(s)
Hipertensión Pulmonar , Mediastinitis , Hipertensión Arterial Pulmonar , Esclerosis , Masculino , Humanos , Persona de Mediana Edad , Mediastino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Mediastinitis/complicaciones , Mediastinitis/diagnóstico , Hipertensión Arterial Pulmonar/patología
8.
Hortic Res ; 10(12): uhad241, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156287

RESUMEN

Tree peony belongs to one of the Saxifragales families, Paeoniaceae. It is one of the most famous ornamental plants, and is also a promising woody oil plant. Although two Paeoniaceae genomes have been released, their assembly qualities are still to be improved. Additionally, more genomes from wild peonies are needed to accelerate genomic-assisted breeding. Here we assemble a high-quality and chromosome-scale 10.3-Gb genome of a wild Tibetan tree peony, Paeonia ludlowii, which features substantial sequence divergence, including around 75% specific sequences and gene-level differentials compared with other peony genomes. Our phylogenetic analyses suggest that Saxifragales and Vitales are sister taxa and, together with rosids, they are the sister taxon to asterids. The P. ludlowii genome is characterized by frequent chromosome reductions, centromere rearrangements, broadly distributed heterochromatin, and recent continuous bursts of transposable element (TE) movement in peony, although it lacks recent whole-genome duplication. These recent TE bursts appeared during the uplift and glacial period of the Qinghai-Tibet Plateau, perhaps contributing to adaptation to rapid climate changes. Further integrated analyses with methylome data revealed that genome expansion in peony might be dynamically affected by complex interactions among TE proliferation, TE removal, and DNA methylation silencing. Such interactions also impact numerous recently duplicated genes, particularly those related to oil biosynthesis and flower traits. This genome resource will not only provide the genomic basis for tree peony breeding but also shed light on the study of the evolution of huge genome structures as well as their protein-coding genes.

9.
J Immunol Res ; 2023: 5599660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023616

RESUMEN

The clinical efficacy of surgery, radiotherapy, and chemotherapy for cancer is usually limited by the deterioration of tumor microenvironment (TME). Neutrophil extracellular traps (NETs) are decondensed chromatin extruded by neutrophils and are widely distributed among various cancers, such as pancreatic cancer, breast cancer, and hepatocellular carcinoma. In the TME, NETs interact with stromal components, immune cells and cancer cells, which allows for the reshaping of the matrix and the extracellular environment that favors the initiation, progression, and metastasis of cancer. In addition, NETs impair the proliferation and activation of T cells and NK cells, thus producing a suppressive TME that restricts the effect of immunotherapy. A better understanding of the function of NETs in the TME will provide new opportunities for the prevention of cancer metastasis and the discovery of novel therapy strategies.


Asunto(s)
Neoplasias de la Mama , Trampas Extracelulares , Humanos , Femenino , Neutrófilos , Neoplasias de la Mama/patología , Microambiente Tumoral
10.
Molecules ; 28(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959693

RESUMEN

Ligustrum robustum has been not only used as a heat-clearing and detoxicating functional tea (Ku-Ding-Cha) but also consumed as a hypotensive, anti-diabetic, and weight-reducing folk medicine. From the leaves of L. robustum, ten new monoterpenoid glycosides named ligurobustosides T10 (1a), T11 (1b), T12 (2a), T13 (2b), T14 (3a), T15 (3b), F1 (4b), T16 (5a), T17 (5b), and E1 (6b), together with five known ones (4a, 6a, 7, 8a, 8b), were separated and identified using the spectroscopic method and chemical method in this research. The results of biological tests exhibited that the fatty acid synthase (FAS) inhibitory action of compound 5 (IC50: 4.38 ± 0.11 µM) was as strong as orlistat (IC50: 4.46 ± 0.13 µM), a positive control; the α-glucosidase inhibitory actions of compounds 1-4 and 7-8, and the α-amylase inhibitory actions of compounds 1-8 were medium; the ABTS radical scavenging capacities of compounds 1-3 and 5-8 (IC50: 6.27 ± 0.23 ~ 8.59 ± 0.09 µM) were stronger than l-(+)-ascorbic acid (IC50: 10.06 ± 0.19 µM) served as a positive control. This research offered a theoretical foundation for the leaves of L. robustum to prevent diabetes and its complications.


Asunto(s)
Ligustrum , Ligustrum/química , Glicósidos/farmacología , Glicósidos/química
11.
Angew Chem Int Ed Engl ; 62(42): e202309887, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37590127

RESUMEN

Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.

12.
Chem Biodivers ; 20(10): e202300648, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615232

RESUMEN

Polysaccharides are rich in Panax notoginseng residue after extraction. This study aims to explore the structural characteristics of PNP-20, which is a homogeneous polysaccharide, separated from P. notoginseng residue by fractional precipitation and evaluate the anti-enteritis effect of PNP-20. The structure of PNP-20 was determined by spectroscopic analyses. A mouse model with enteritis induced by restraint stress (RS) and lipopolysaccharide (LPS) was used to evaluate the pharmacological effect of PNP-20. The results indicated that PNP-20 consisted of glucose (Glc), galactose (Gal), Mannose (Man) and Rhamnose (Rha). PNP-20 was composed of Glcp-(1→, →4)-α-Glcp-(1→, →4)-α-Galp-(1→, →4,6)-α-Glcp-(1→, →4)-Manp-(1→ and →3)-Rhap-(1→, and contained two backbone fragments of →4)-α-Glcp-(1→4)- α-Glcp-(1→ and →4)-α-Galp-(1→4)-α-Glcp-(1→. PNP-20 reduced intestinal injury and inflammatory cell infiltration in RS- and LPS-induced enteritis in mice. PNP-20 decreased the expression of intestinal tumor necrosis factor-α, NOD-like receptor family pyrin domain containing 3, and nuclear factor-κB and increased the expression of intestinal superoxide dismutase 2. In conclusion, PNP-20 may be a promising material basis of P. Notoginseng for the treatment of inflammatory bowel disease.

13.
J Endocrinol ; 259(1)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417397

RESUMEN

Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1ß, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factor 2 Relacionado con NF-E2 , Ratones , Humanos , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Autofagia , Pulmón/metabolismo , Pulmón/patología
14.
Plant J ; 115(4): 1051-1070, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37162381

RESUMEN

Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.


Asunto(s)
Arabidopsis , Camellia sinensis , Catequina , Antocianinas , Camellia sinensis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , , Regulación de la Expresión Génica de las Plantas
15.
Int J Oncol ; 62(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37203412

RESUMEN

N6­methyladenosine (m6A) modification, as the most common and abundant type of RNA modification in mammalian cells, participates in the processes of mRNA transcription, translation, splicing and degradation, serving to regulate RNA stability. In recent years, a large number of studies have indicated that m6A modification is able to affect tumor progression, participate in tumor metabolism, regulate tumor cell ferroptosis and change the tumor immune microenvironment, thereby affecting tumor immunotherapy. In the current review, the main features of m6A­associated proteins are presented with a focus on the mechanisms underpinning their roles in tumor progression, metabolism, ferroptosis and immunotherapy, also emphasizing the potential of targeting m6A­associated proteins as a promising strategy for the treatment of cancer.


Asunto(s)
Ferroptosis , Neoplasias , Animales , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia , Adenosina , Mamíferos , Microambiente Tumoral/genética
16.
Am J Cancer Res ; 13(2): 602-622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895988

RESUMEN

Gastric cancer is one of the most common malignancies of the digestive system with high mortality rates. Recent studies have demonstrated that circRNAs are novel noncoding RNAs that play vital roles in the tumorigenesis and development of gastric cancer. Our study found a novel circRNA, namely, hsa_circ_0107595 (also called circABCA5), that is overexpressed in gastric cancer based on circRNA sequencing. qPCR demonstrated its overexpression in gastric cancer specimens. The overexpression or knockdown of circABCA5 in gastric cancer cell lines was achieved by lentiviral-mediated transfection. All MTS, EdU, Transwell and migration assays and xenograft experiments demonstrated that circABCA5 could promote gastric cancer proliferation, invasion, and migration in vitro and in vivo. Mechanistically, both RIP and RNA pulldown assays confirmed that circABCA5 could bind to the SPI1 protein, upregulate SPI1 expression, and promote its nuclear translocation. SPI1 could further promote the malignant phenotype of gastric cancer by activating IL6/JAK2/STAT3 signaling. In addition, EIF4A3 could directly bind to circABCA5, promoting its stability and expression. Our study reveals that circABCA5 plays a vital role in the diagnosis and prognosis of gastric cancer and may even be developed as a molecular target for the treatment of gastric cancer.

17.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902071

RESUMEN

Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Fluoruros/metabolismo , Aluminio/metabolismo , Metabolismo Secundario , Plantas/metabolismo , Compuestos Orgánicos/metabolismo , Hojas de la Planta/metabolismo , Té/metabolismo
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 411-414, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36949707

RESUMEN

Objective: To investigate the epidemiological characteristics of patients with silicosis combined with pulmonary infection in recent years, to study the distribution and the drug susceptibility of fungal and bacterial pathogens in their sputum samples, and to provide references for the prevention and treatment of silicosis and the appropriate drug use. Methods: The clinical data and drug sensitivity test results of patients with silicosis combined with pulmonary infection diagnosed at the Department of Occupational Diseases, West China Fourth Hospital, Sichuan University were retrospectively analyzed. Results: A total of 318 patients with silicosis combined with pulmonary infection who received treatment between January 2017 and December 2020 were enrolled. All the patients had positive microorganism test results. All participants were male. Their median age at the time of onset was 51.00 years and the median time of exposure to silica dust at work was 12.40 years. They worked mostly in construction, non-ferrous metal mining, and coal mining. The main types of work they did were pneumatic drilling, coal digging, and mining. The positive detection rates for the first, second and third phases of silicosis were 27.54%, 28.32%, and 32.97%, respectively. A total of 341 strains of fungal and bacterial pathogens were isolated, of which, 54.1% were fungi, including 114 strains (35.8%) of Candida albicans, and 53.1% were bacteria, including 168 strains (52.8%) of gram-negative bacteria, most of which being Klebsiella pneumoniae (30.2%). There was only 1 strain (0.3%) of gram-positive bacteria, namely Staphylococcus hemolyticus. Gram-negative bacilli were most resistant to ampicillin and highly sensitive to penicillin G and ofloxacin. Conclusion: Among patients with silicosis combined with pulmonary infection, the incidence of pulmonary infection increases along with the progress of silicosis. Microorganism analysis reveals high detection rates for fungi and the bacteria detected are predominantly gram-negative bacteria. The overall prospect for drug resistance rate was not optimistic.


Asunto(s)
Neumonía , Silicosis , Humanos , Masculino , Femenino , Estudios Retrospectivos , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Bacterias , Bacterias Gramnegativas , Resistencia a Medicamentos , Antibacterianos/farmacología
19.
Mol Cancer Res ; 21(6): 525-534, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806444

RESUMEN

This work focused on investigating the effect of A Disintegrin And Metalloproteases 12 (ADAM12) on colorectal cancer development. ADAM12 levels within colorectal cancer samples were analyzed by using The Cancer Genome Atlas (TCGA) database. Then, altogether 55 patients with colorectal cancer were enrolled to detect ADAM12 expression. ADAM12 overexpression or knockdown was transfected into colorectal cancer cells. Thereafter, this work examined colorectal cancer cell viability through Cell Counting Kit-8 (CCK-8) and cell clone forming assays. Meanwhile, nude mice were utilized for in vivo analysis. Transwell assays were conducted for detecting migration and invasion of colorectal cancer cells. In addition, mRN and protein expression was analyzed through qRT-PCR, Western blotting (WB) together with IHC staining. As a result, ADAM12 and YAP1 expression increased among colorectal cancer cases, and it indicated the dismal prognostic outcome of patients. Furthermore, ADAM12 promoted colorectal cancer cell growth, migration, invasion along with in vivo growth. ADAM12 suppressed p-MST1/MST1, p-LATS1/LATS1 together with p-YAP1 protein levels within colorectal cancer cells. ADAM12 increased YAP1 and TAZ protein levels as well as CTGF, Cyr61, and Birc5 mRNA expression in colorectal cancer cells. YAP1 inhibitor administration counteracted ADAM12's function in promoting colorectal cancer cell growth, migration, invasion, and increasing CTGF, Cyr61, and Birc5 expression. IMPLICATIONS: Our study indicates that ADAM12 facilitates colorectal cancer progression through suppressing Hippo pathway activity, and that ADAM12 is the candidate therapeutic target and prognostic biomarker for patients with colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Hippo , Animales , Ratones , Transducción de Señal/genética , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
20.
Hortic Res ; 10(2): uhac278, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36793755

RESUMEN

Stomata perform important functions in plant photosynthesis, respiration, gas exchange, and interactions with environments. However, tea plant stomata development and functions are not known. Here, we show morphological changes during stomata development and genetic dissection of stomata lineage genes regulating stomata formation in tea developing leaves. Different tea plant cultivars displayed clear variations in the stomata development rate, density and size, which are closely related to their tolerance against dehydration capabilities. Whole sets of stomata lineage genes were identified to display predicted functions in regulating stomatal development and formation. The stomata development and lineage genes were tightly regulated by light intensities and high or low temperature stresses, which affected stomata density and function. Furthermore, lower stomatal density and larger size were observed in triploid tea varieties as compared to those in diploid plant. Key stomata lineage genes such as CsSPCHs, CsSCRM, and CsFAMA showed much lower expression levels, whereas negative regulators CsEPF1 and CsYODAs had higher expression levels in triploid than in diploid tea varieties. Our study provides new insight into tea plant stomatal morphological development and the genetic regulatory mechanisms on stomata development under abiotic stresses and genetic backgrounds. The study lays a foundation for future exploring of the genetic improvement of water use efficiency in tea plants for living up to the challenge of global climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA